Davey-Stewartson Equation with Fractional Coordinate Derivatives
نویسندگان
چکیده
منابع مشابه
Davey-Stewartson Equation with Fractional Coordinate Derivatives
We have used the homotopy analysis method (HAM) to obtain solution of Davey-Stewartson equations of fractional order. The fractional derivative is described in the Caputo sense. The results obtained by this method have been compared with the exact solutions. Stability and convergence of the proposed approach is investigated. The effects of fractional derivatives for the systems under considerat...
متن کاملFokker–Planck equation with fractional coordinate derivatives
Using the generalized Kolmogorov-Feller equation with long-range interaction, we obtain kinetic equations with fractional derivatives with respect to coordinates. The method of successive approximations with the averaging with respect to fast variable is used. The main assumption is that the correlator of probability densities of particles to make a step has a power-law dependence. As a result,...
متن کاملFinite-dimensional integrable systems associated with Davey-Stewartson I equation
For the Davey-Stewartson I equation, which is an integrable equation in 1+2 dimensions, we have already found its Lax pair in 1+1 dimensional form by nonlinear constraints. This paper deals with the second nonlinearization of this 1+1 dimensional system to get three 1+0 dimensional Hamiltonian systems with a constraint of Neumann type. The full set of involutive conserved integrals is obtained ...
متن کاملRogue waves in the Davey-Stewartson I equation.
General rogue waves in the Davey-Stewartson-I equation are derived by the bilinear method. It is shown that the simplest (fundamental) rogue waves are line rogue waves which arise from the constant background with a line profile and then disappear into the constant background again. It is also shown that multirogue waves describe the interaction of several fundamental rogue waves. These multiro...
متن کاملDynamics of rogue waves in the Davey–Stewartson II equation
General rogue waves in the Davey–Stewartson (DS)II equation are derived by the bilinear method, and the solutions are given through determinants. It is shown that the simplest (fundamental) rogue waves are line rogue waves which arise from the constant background in a line profile and then retreat back to the constant background again. It is also shown that multi-rogue waves describe the intera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Scientific World Journal
سال: 2013
ISSN: 1537-744X
DOI: 10.1155/2013/941645